As I said in an other reply, RISC-V is not the solution for the reason that they are perfect today. It is because it is not limited to being used by a few megacorporations that do whatever they want, but it allows competition where companies do what they need to become and remain a good choice.
I understood that. My point was rather that in this particular case (a CPU bug that could be fixed via microcode, but AMD chose not to do so for certain CPUs), RISC-V wouldn’t have been of any advantage, because there would be nothing to fix in the first place. Sure, one could introduce microcode for RISC-V and people have argued in favor of doing so for this exact reason, but the architecture was intentionally designed to not require microcode.
As I said in an other reply, RISC-V is not the solution for the reason that they are perfect today. It is because it is not limited to being used by a few megacorporations that do whatever they want, but it allows competition where companies do what they need to become and remain a good choice.
I understood that. My point was rather that in this particular case (a CPU bug that could be fixed via microcode, but AMD chose not to do so for certain CPUs), RISC-V wouldn’t have been of any advantage, because there would be nothing to fix in the first place. Sure, one could introduce microcode for RISC-V and people have argued in favor of doing so for this exact reason, but the architecture was intentionally designed to not require microcode.
Now we just need a friendly neighbourhood nanoscale fab.